无锡识凌科技有限公司
OA
媒体中心
 
公司动态 | 行业热点 | 相关视频
> 媒体中心 >  行业热点
 
人工智能+医疗市场分析及趋势报告出炉
2017/6/27 15:40:47

在《人工智能人才数据报告》中显示,北美地区去年人工智能开发的相关职位需求约有10万,而人才市场只有3万名开发者,供求严重失衡。这一现象直接导致全球科技巨头纷纷加入人工智能人才争夺战之中。而在国内,人工智能领域的专业人才供求失衡更严重,供求比例接近1比10。国内企业百度、腾讯、滴滴等以设立研究院的形式,杀入美国高科技中心硅谷,与谷歌、亚马逊、微软等企业掀起人才的激烈争夺战。随着全球各大互联网巨头纷纷推出自己的人工智能产品和技术,2017年也被称为人工智能发展的拐点。基于此,HC3i中国数字医疗网秉持专注、专业的态度组织开展了2016-2017年度人工智能+医疗市场分析及趋势报告的调研活动。样本统计:本次调查问卷回收样本数量达到5693份,有效样本5465份,有效率达95.9%。本次样本对象包含了61.34%医院用户,33.1%从事与人工智能+医疗领域相关的企业用户,以及5.56%的资本方用户。


第一章 人工智能发展历程

两年前比尔·盖茨在一次活动中被问到这样一个问题,“如果微软没有取得今天的成功,你会做什么?”盖茨的回答是:“我可能会从事人工智能技术的研究工作”。“人工智能”(Artificaial Inetlligence)一词最初是在1956年Dartmouth学会上被提出,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。但是在其还不长的历史中,人工智能的发展比预想的要慢,但脚步始终在前进。

1.1 人工智能发展五大阶段:

第一阶段:计算机时代。1941年电子计算机的出现使信息存储和处理的各个方面都发生了巨大变革。1949年具有存储程序的计算机经过改进简化了输入程序,而且计算机理论的发展产生了计算机科学,并最终促使了人工智能的出现。计算机通过电子方式处理数据这一发明,为人工智能的可能实现提供了一种媒介。

第二阶段:逻辑时代。计算机为人工智能提供了必要的技术基础,但直到50年代早期人们才注意到人类智能与机器之间的联系。1955年末,Newell和Simon做了一个名为“逻辑专家”(Logic Theorist)的程序,而这个程序被很多人认为是第一个AI程序。它将每个问题都表示成一个树形模型,然后选择最可能得到正确结论的那一支脉来求解问题。“逻辑专家”对公众和AI研究领域产生的影响使它成为AI发展中的一个重要的里程碑。在1956年,人工智能之父John McCarthy组织了Dartmouth学会,聚集了AI的创立者们,为以后的AI研究奠定了基础。

第三阶段:系统时代。AI研究开始快速发展,Carnegie Mellon大学和MIT开始组建AI研究中心,研究面临着新的挑战:一是,需要建立能够更有效解决问题的系统;二是,建立自我学习的系统。1958年,McCarthy宣布了新的成果:LISP语言。“LISP”的意思是“表处理”(ListProcessing)。1963年MIT从美国政府申请到一笔220万美元的资助,用于研究机器辅助识别。

第四阶段:计算时代。在MIT由Marvin Minsky领导的研究人员发现,面对小规模的对象,计算机程序可以解决空间和逻辑问题。在60年代末出现的“STUDENT”可以解决代数问题。70年代的专家系统,可以预测在一定条件下某种解的概率。由于当时计算机已拥有巨大容量,专家系统有可能从数据中得出规律。同时,类似注明的Minsky的构造理、DavidMarr提出的机器视觉方面的新理论,以及PROLOGE语言。80年代,AI前进更为迅速,进入到了计算时代。

第五阶段:融合时代。从人们开始感受到计算机和人工智能技术的影像,计算机技术不再只属于实验室中的一小群研究人员。各行各业都开展了基于计算机技术之上的人工智能技术的研发和探索。AI技术简化了医疗、教育、交通等行业的规则,同时,他们对人工智能相关技术更大的需求促使新的进步不断出现。人工智能已经并且将继续不可避免的改变我们的生活。

1.2 促进人工智能领域革命的五大因素:

(1)机器学习machine learning的成熟,主要由云计算资源、大范围互联网数据收集驱动。

(2)深度学习deep learning——一种适应性人工神经网络形式,通过back propagation反向传播的方法来训练,大力推动机器学习。

(3)基础操作的硬件技术重大进步,如感应、感知、目标识别等。

(4)数据导向产品的新平台和市场、寻找新产品和市场的利益驱动。

(5)有供给、有需求的市场。

第二章 人工智能+医疗发展

随着图像识别、深度学习、神经网络等关键技术的突破带动了人工智能新一轮的大发展。人工智能+医疗属于人工智能应用层面范畴,泛指将人工智能及相关技术应用在医疗领域。与互联网的不同,人工智能对医疗领域的改造是颠覆性的。从变革层面讲,人工智能是从生产力层面对传统医疗行业进行变革;从形式上讲,人工智能应用在医疗领域是一种技术创新;从改造的领域来讲,人工智能改造的是医疗领域的供给端;从驱动力来讲,人工智能主要是技术驱动,尤其是底层技术的驱动;从创新的性质而言,人工智能属于重大创新;从对市场影响而言,人工智能带来的是增量市场,且随着智能程度不断提升,理论上潜在的市场空间无限。

2.1 人工智能+医疗领域发展史:

2016年2月,谷歌DeepMind公布成立DeepMind Health部门,与英国国家健康体系(NHS)合作,帮助他们辅助决策或者提高效率缩短时间。在与皇家自由医院的合作试点中,DeepMind Health开发了名为Streams的软件。这一软件用于血液测试的AKI报警平台,帮助临床医生更快地查看医疗结果。

5月,“人工智能”首次出现在“十三五”规划草案中,5月底,发改委高技术产业司正式印发《互联网+人工智能三年行动实施方案》,明确了人工智能的总体思路、目标与主要任务。

6月,IBM Watson联手XPRIZE设立500万美元人工智能基金项目,力促人工智能发展。

7月,谷歌DeepMind 与 NHS(英国国家医疗服务体系)再次合作,同 Moorfields 眼科医院一起开发辨识视觉疾病的机器学习系统。通过一张眼部扫描图,该系统能够辨识出视觉疾病的早期症状,达到提前预防视觉疾病的目的。

9月20日,IBM公司和美国麻省理工学院(MIT)宣布,将联合创建“激发大脑多媒体机器理解实验室(BM3C)”,旨在使人工智能可以像人一样看和听。

9月28日,Facebook、Amazon、谷歌Alphabet、IBM和微软自发聚集在一起,宣布缔结新的人工智能(AI)伙伴关系,旨在进行研究和推广人工智能。

10月21日,世界机器人大会在北京亦创国际会展中心开幕,25日圆满落幕,此次大会有几个人工智能医疗产品令人难忘,代表作是“变形金刚”胶囊,吞下后短短一分钟就在胃里完成变身,锁定病灶,拍照,回传。

可见,2016年既是人工智能的黄金时代,同时也是人工智能+医疗的黄金时代。而2017年被称为人工智能发展的拐点,而这一拐点的标志之一就是人工智能技术的加速产品化。“长远来看是设备将消失,计算将从移动优先进化到人工智能优先。”

第三章 人工智能+医疗市场发展现状分析

通过问卷调查反馈的数据显示,在医疗行业中,已成熟应用以及正在尝试、计划应用人工智能技术的占比已达78.5%。同时,有76.39%的人认为人工智能技术将会在医疗行业广泛应用。对此,我们从人才、技术、应用、资本四个维度进行人工智能+医疗市场发展现状分析。

3.1 人才

全世界都需要优秀的人工智能人才,以进一步释放机器计算和机器学习技术的巨大潜能。目前拥有人工智能相关专业人才数量最多的十个国家依次为:美国、英国、印度、加拿大、法国、荷兰、德国、西班牙、巴西、中国。

从中美人工智能人才的从业年限构成比例上看,美国拥有10年以上经验的人工智能人才比例接近50%,而我国十年以上经验的人才比率只有不到25%。然而,美国5年以下经验的人才比例约为28%,而我国的这一数字比率超过了40%。尽管我国人工智能专业人才总量较美国和欧洲发达国家来说还较少,10年以上资深人才尚缺乏。可见,在我国,人工智能领域的专业人才供求失衡严重,供求比例接近1比10。国内企业百度、腾讯、滴滴等以设立研究院的形式,杀入美国高科技中心硅谷,与谷歌、亚马逊、微软等企业掀起人才的激烈争夺战。

而在医疗行业,既懂人工智能又懂医疗的人才更是稀缺,基于此背景下,我国加强对人工智能专业人才的重视程度,国家发改委、科技部等四部委去年联合发布《“互联网+”人工智能三年行动实施方案》,并将“人工智能”首次纳入到中国政府工作报告中。从人才从业年限结构分布上来看,我国新一代人工智能人才比例较高,人才培养和发展空间广阔。

3.2 技术

据调查数据显示,61.11%的人认为人工智能在医疗行业的主要发展机遇是技术的增长速度快于其应用速度。

高效的算法、充足的数据和计算能力是人工智能发展的三个必要条件。

·算法。就应用层面而言,中国的算法发展程度与其他国家并无太大差距。事实上,中国在语音识别和定向广告的人工智能算法上取得了突破进展。而全球的开源平台也使得中国企业能够快速地复制其他地区开发的先进算法。但是,目前中国的研究人员在基础算法研发领域仍远远落后于英美同行。需要中国的大学教育对学生提出更高的数学和统计学要求,并且集中资源发展该领域全球前沿研究,人工智能的发展必将受益匪浅。另一个值得思考的方向是改进现有的科研经费分配模式来推进创新。

·数据。人工智能系统必须通过大量的数据来“训练”自己,才能不断提升输出结果的质量。中国的医疗数据并不匮乏,但是有效的医疗数据仍旧“捉襟见肘”,这让机器学习上困难重重。

数据领域的三大因素可能会影响中国人工智能的发展:一是,尽管能够通过专有平台获得海量数据,但在创建一个标准统一、跨平台分享的数据友好型生态系统方面,中国仍落后于美国。二是,全球各国都已意识到开放政府数据库有助于促进私营领域创新,但中国政府数据的开放度仍极为有限。三是,对跨境数据流通的限制也使得中国在全球合作中处于不利地位。

·计算能力。高运算速度的计算技术是发展尖端人工智能技术的重中之重,而其耗能水平则决定着人工智能解决方案能否实现大规模商业化。计算能力是人工智能的基础设施之一,因此具有极高的战略意义。

3.3 应用

人工智能对于医疗健康领域中的应用已经非常广泛,从应用场景来看主要分成了语音识别、医学影像、药物挖掘、营养学、生物技术、急救室管理、医院管理、健康管理、精神健康、可穿戴设备、风险管理和病理学共12个领域。

3.3.1 语音识别:人工智能可以诊断疾病。

通过语音识别和疾病数据分析,可实现机器诊断疾病。医疗是一个更垂直,专业度更高的领域,有很多专业术语和专业技能需要我们去学习。而这就需要大量的医疗专业词汇库的积累。人工智能诊断疾病可更准确、更快捷、更安全,以及更便宜的实现病患处理。

3.3.2 医学影像:帮助和教会医生看胶片

医学影像与人工智能的结合,是数字医疗领域较新的分支,而且是数字医疗产业的热点。医学影像包含了海量的数据,即使有经验的医生有时也显得无所适从。医学影像的解读需要长时间专业经验的积累,放射科医生的培养周期相对较长,而人工智能在对图像的检测效率和精度两个方面,都可以做得比专业医生更快,还可以减少人为操作的误判率。

3.3.3 药物挖掘:大幅度降低药物研发成本

 
上一页:联动医疗资源 共同满足百姓就医需求
下一页:CDSS临床决策支持系统的应用 逐渐从大医院转向基层医疗机构